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Received 11 May 1992 

Abslract. We present the third (and final) paper in our three-stage numerical exposition 
of the effects of quenched disorder on phase ordering dynamics. In this paper, we study 
the effects of random fields on domain growth. Our numerical results indicate that the 
domain growth law is logarithmic for both the cases with Ron-conserved and conserved 
order parameter. This is compatible with theoretical expectations. We also study the 
dynamical scaling of the smctmre factor for bath the non-conserved and conserved cases. 

1. Introduction 

There has been much interest in the study of phase ordering dynamics, namely the 
dynamics of domain growth in two-phase mixtures which have been rendered thermo- 
dynamically unstable by quenching below the critical coexistence temperature T, [l]. 
Most of the numerical and theoretical attention has been focused on pure and isotropic 
systems, which have already been the subject of substantial controversy. Now, it is 
well established that domain growth in pure and isotropic systems is characterized by 
a unique, time-dependent length scale R( t )  (where f is the time). This length scale 
has a power-law dependence on time, namely R ( t )  = t", where 4 is called the growth 
exponent. For the case with non-conserved order parameter (e.g. ordering of a ferromag- 
net), +=$ [l]. For the case with conserved order parameter but no hydrodynamic 
effects (e.g. segregation of a binary alloy), 4 = f  [l]., For the case with conserved order 
parameter and where hydrodynamic effects are relevant (e.g. segregation of a binary 
fluid), recent numerical results [2] demonstrate conclusively that 4 = 1, a result that 
was theoretically proposed by Siggia [3] some time ago. 

Naturally, experimental systems are neither pure nor isotropic. Impurities in binary 
mixtures (e.g. mobile or immobile vacancies [4], random fields [SI) act as trapping 
centres for growing domains and alter the growth laws mentioned above. Anisotropy 
in binary mixtures is introduced by external effects (e.g. gravitational fields [a], surfaces 
171) or internal effects (e.g. strain [SI) and can dramatically alter the dynamics of phase 
ordering in affected systems. Any  realistic^ simulation (or theory, for that matter) of 
an experimental situation must account for the above effects. In an attempt to address 
some of these realistic effects, we have initiated a three-stage study of the effects of 
disorder on the dynamics of phase ordering. There have been a number of Monte 
Carlo (Mc) simulations of these effects [9-121. Unfortunately, these have not been 
conclusive in fixing either the domain growth law or the nature of dynamical scaling 
of the structure factor. (An exception is the recent MC study of random magnets by 
Bray and Humayun [9]). We have approached this ,problem using coarse-grained cell 
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dynamical system (CDS) models 1131, which have had considerable success in elaborat- 
ing the nature of domain growth in pure and isotropic systems. In the first stage of 
our present exposition (referred to as I), we considered the slowing down of ordering 
in random magnets (i.e. the case with non-conserved order parameter) [14]. In the 
second stage of our exposition (referred to as II), we reported on non-algebraic domain 
growth in binary alloys [15]. This is the third and final paper in our exposition. In 
this paper, we present comprehensive results (from CDS models) for domain growth 
in Ising-like systems with random fields. We will consider the cases with both non- 
conserved and conserved order parameter. 

This paper is organized in the following fashion. In section 2 we describe the CDS 
models used in this study. In section 3 we describe our results for the case with 
non-conserved order parameter. Section 4 reports our results for the case with conserved 
order parameter. In section 5 we end with a summary and discussion. 

S Pun and N Pare?& 

2. Modelling the presence of random fields 

The starting point of our modelling is the time-dependent Ginzburg-Landau (TDGL) 
equation which describes the temporal evolution of a system described by a non- 
conserved order parameter (e.g. a coarse-grained version of the king model with 
Gauber kinetics [16]), 

In (2.1), $(r, t )  is the scalar order parameter at point P and time t ;  and L is a 
phenomenological parameter. For the Ising model in an external space-dependent 
field, the coarse-grained free-energy functional f f [$(r ,  t)] in (2 .1)  is usually taken to 
be of the +4 form, namely, 

where T, g and K are phenomenological constants which respectively measure the 
temperature T (7- (Tc- T), where T, is the critical temperature); the coupling con- 
stant; and the interfacial energy. The external field h(r)  couples linearly with the order 
parameter [17]. The Gaussian white noise u(r,  t )  satisfies the fluctuation-dissipation 
relation 

(u(r ,  t)u(r' ,  t')) = 2TLS(r - r')S(t - t ')  (2.3) 

where we have set the Boltzmann constant to unity. The TDGL equation corresponding 
to the free-energy functional (2.2) is then 

(2.4) -- a'(r' 'I - L[mJ(r, t )  -g$(r ,  t )3+ KV2$(r, f)+ h(r)]+u(r, t ) .  
at 

The corresponding partial differential equation for the temporal evolution of a binary 
alloy with a space-dependent external field is 

m= -LV2[@( r, I) - g$( r, t)'+ KVz$(r, t )  + h(r)  ]+f( r, t ) .  (2.5) at  
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Equation (2.5) is a simple generalization of the Cahn-Hilliard-Cook equation [lS], 
which describes the evolution of a binary alloy undergoing phase segregation. This 
phenomenological equation can be motivated [19J by applying the master equation 
approach [16] io the random field king model (RFIM) with~Kawasaki kinetics, which 
is the appropriate microscopic model for this case. In (2.5), the noisef(r, t) is Gaussian 
with mean zero and satisfies the fluctuation-dissipation relation 

(2.6) 
In papers I and 11, we have rescaled (2.4) and (2.5) and cast them in a dimensionless 
form. We do not repeat this rescaling here but rather just write down the corresponding 
dimensionless forms. For the non-conserved case, we have [14] 

(f(r, t)f(r‘, t’)) = -2TLV28(r-r)8(t - t’). 

where +, r and t are now all dimensionless; and 
/ i(r)=-&JFjh(r)  

2gT r di2  
E=&) 

d being the dimensionality. For’the conserved case, we have [lS] 

-=-v’[+(r, at t)-+(r, t)3+~2+(r,  t )+~( r ) l+&p( r ,  t)  (2.9) 

where (again) the variables are now dimensionless; and 

2gT r 

T 2  
E =- (;) 

‘(2.10) 

Equations (2.7) and (2.9) are used to construct computationally efficient CDS models, 
as is already discussed extensively in the literature [13-151. We do not reiterate the 
procedure here but merely write down the corresponding CDS models. For the non- 
conserved case, we have 

+(r, t+ l )=f~(+(r ,  t!)+DAD+(r, t )+Wr)+Bp( r ,  0 (2.11) 
where the time tis incremented in discrete steps; and the function fA(x) is the piecewise 
linear function 

(2.12) 

A being a parameter.(>l). This function has an unstable fixed point at x = O  (corres: 
ponding to the homogeneous state) and two symmetrically placed stable fixed points 
at x=* l  (corresponding to the stable ‘spin-up’ and ‘spin-down’ states). In (2.12), D 
is also a parameter and A,, is the isotropically discretized Laplacian operator at a 
point. We will take H ( r )  to be a random field with amplitude C, where C is the third 
parameter in our model. Finally, there is a fourth parameter B, which measures the 
strength of the random noise. 

For the case with conserved order parameter, we desire to construct the CDS model 
which mimicks the dynamics of (2.9). In the continuum case, the partial differential 
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equation which describes the case with conserved order parameter is naively obtained 
by appending an (-V2) operator to the chemical potential in the +DOL equation. The 
required CDS model for the conserved dynamics is obtained analogously [13] from 
(2.11) as 

$(r, t+ l )=$(r ,  t)-Adf*($(r, t ) ) - $ ( r ,  t)+DAD$(r, t)+H(r)l+Be(r,  t )  (2.13) 

where (again) the time t is incremented in discrete time steps. The CDS models described 
by (2.11) and (2.13) have been used to obtain the two-dimensional results described 
in sections 3 and 4. 

There are four parameters in our models, namely the constants A and D; the 
amplitude of the random field C; and the noise amplitude B. The choice of parameters 
is dictated by the requirements that the schemes be numerically stable; and the results 
obtained be reasonable [ 131. We use the parameter values A = 1.3 and D = 0.125, which 
have proved appropriate for the case without disorder [13]. Essentially, the values of 
A and D affect only the width of the interface between domains and not the bulk of 
the domains. Asymptotically, the width of the interface (which is constant in time) is 
an irrelevant variable compared to the characteristic domain size (which grows in 
time). Thus, the only effect of the interface width is to introduce non-universal features 
in the scaled structure factors a t  early times. Asymptotically, scaled structure factors 
are independent of the interface width and, consequently, independent of the values 
of A and D. This has been confirmed for the case with disorder, though we do not 
present detailed results here. The asymptotic results presented below are independent 
of the values of A and D over a broad range of values. 

Let us next discuss the role played by the random field. Results described here are 
for the case where H ( r )  is uniformly and randomly distributed between -C and +C, 
where we will specify the different values of C subsequently. For completeness, we 
have also performed simulations in which the random field is Gaussian distributed. 
The results are identical to those presented here and, hence, we do not present the 
results for Gaussian distributed random fields. 

Finally, the choice of the noise amplitude raises some important questions. In the 
case of pure systems, the presence of noise only affects the smoothness of the interface 
of the domains. With the passage of time, the interface thickness (or raggedness) is 
irrelevant in comparison to the characteristic domain size. Therefore, for pure systems, 
noise is an irrelevant variable asymptotically and this has been demonstrated numeri- 
cally [13]. However, domain growth in disordered systems is driven by the thermally 
assisted hopping of energy barriers created by the disorder traps. In the absence of 
thermal noise, the system is plagued by freezing effects and it is hard to get domain 
growth over extended time regimes. Thus, we choose a non-zero noise amplitude 
( B  = 0.3) for our simulations. Numerically, we choose noise to be uniformly and 
randomly distributed between -0.3 and 0.3 for the non-conserved case. For the 
conserved case, we should caution the reader that the noise t e p  has to be chosen 
more carefully as the noise must satisfy a more complicated fluctuation-dissipation 
relation, namely equation (2.6). Thus, for the conserved case, the noise is chosen to 
be of the form S(r, t )  =VDp(r, t )  [13], VD is the symmetrically discretized divergence 
operator at a point; and p(r, t )  is a vector field (with d components), whose elements 
are uniformly and randomly distributed between -0.3 and 0.3. (Again, we have also 
done simulations with Gaussian distributed noise. The results are identical to those 
presented here. Furthermore, different noise amplitudes give similar growth to that 
described here. Thus, we do not present these results here.) 

S Puri and N Parekh 
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3. Numerical results for the case with non-conserved order parameter 

We have implemented the scheme (2.1 1)  on a 128 x 125 lattice with periodic boundary 
conditions. The quantity usually calculated is the time-dependent structure factor, 
which is defined as 

(3.1) 

where $(k, t )  is the Fourier transform of $(r, t )  on the discrete lattice; the angular 
brackets denote an averaging over different initial conditions; the square brackets 
denote an averaging over different disorder configurations; and the * denotes complex 
conjugation. The wavevector k take up the discrete values 27r(k, k,,)/l28, where k, 
and k,, range from 1 to 128. For each fixed configuration of disorder, we obtain  structure^ 
factors as averages over 20 different initial conditions. Then,'we average over (typically) 
20 different configurations of the random field. The time-dependent structure factors 
are circularly averaged to give the scalar w function S(k ,  t ) ,  which will be shown in 
subsequent figures. The characteristic domain size ( R ) ( t ) ,  is defined as the reciprocal 
of the first moment of the scalarized structure factor, i.e. (R)(  t )  = (k)( t)-', where (k)( t )  
is defined as 

S(k t )  = [(W t)($(k 0")l 

(3.2) 
dk W k ,  t )  

(k ) ( t )=  I2 dkS(k, t )  

where S, is the magnitude of the largest wavevector we consider. The results presented 
here are for k,,, equal to half the magnitude of the largest wavevector lying in the 
Brillouin zone of the lattice. The characteristic length scale thus measured is in units 
of the lattice spacing. 

Figure 1 shows the characteristic length scale (R)(t) as a function of time t for 
different amplitudes of the random field (as indicated). In this figure, we have plotted 
(R)(t)' against i as it is known that domain growth for the TDGL without a random 

E 

0 

0 1000 2000 -3000 , 4000 5000 
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m 0 . 2  
A 0.3 
I 0 . 4  

L 

Figurel. Plotof(R)(t)'against tforthenon-conservedcase,where(R)(t) isthecharacteris- 
tic domain size at time L Data is presented for disorder amplitudes C = 0.0 (the pure case, 
marked by circles): and C =O.Z, 0.3, 0.4 (marked by the symbols indicated). 
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field obeys the Lifshitz-Cahn-Allen (LCA) growth law ( R ) ( t ) =  t"'. In figure 1, data 
for the pure system is denoted by circles and is seen to obey the LCA growth law. For 
very early times, data for the disordered case also obeys the LCA growth law (not 
evident on the scale of figure 1) but there is a rapid crossover to a non-LcA growth 
regime. The crossover is faster for higher amplitudes of the random field. This is 
qualitatively similar to the crossover to non-algebraic domain growth random exchange 
magnets [14]. Villain and Grinstein and Fernandez [20] have theoretically argued that 
the asymptotic growth law is logarithmic in time. In figure 2, we plot ( R ) ( t )  against 
In f and find that the data for the TDCL equation with non-zero random field shows 
logarithmic growth over extended periods of time. Unfortunately, freezing affects our 
data at later times for the stronger values of random field amplitude. Thus, for C = 0.3 
(or C = 0.4), freezing results in a deviation from the logarithmic growth law at approxi- 
mately t =2700 (or t = 1630). This is consistent with the results of Oguz et al [12] 
obtained by the direct integration of the TDCL equation with a random field in two 
dimensions. 

S Pun and N Parekh 
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I n t  
Figure 2. Plot of(R)(t) againstln t for the data from figure 1. Different disorder amplitudes 
are denoted by the same symbols as in figure 1. 

Let us next consider the dynamical scaling of the structure factor. The existence 
of a unique length scale ensures that the scalarized structure factor has the dynamical 
scaling form [21] 

S(k,  t )  =(k) ( t ) -dF(k l (k ) ( t ) )  (3.3) 
where F ( x )  is the so-called master function. We have confirmed the validity of 
dynamical scaling by superimposing (not shown here) data for S(k, t)(k)(t)' against 
k / ( k ) ( t )  from different times for the different disorder amplitudes shown in figure 1. 
Data for different times collapses well onto a single master curve (as expected). (At 
stronger fields than those shown here, there is some evidence for a breakdown in the 
scaling behaviour, as expected by Grant and Gunton [22] due to the absence of 
long-range order for the RFIM in two dimensions. However, this needs to be carefully 
investigated and we are presently performing longer simulations on larger systems so 
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as to clarify this). In figure 3(a) ,  we test for what we refer to as ‘superscaling’, namely 
we superimpose S(k, t)(k)(t)’  against k / ( k ) ( t )  for different disorder amplitudes. Data 
is from different times t = 1000 (for C = 0.0, the pure case); and t = 3000 (for C = 0.2, 
0.3, 0.4). The excellent collapse of the data indicates that superscaling holds good, i.e. 
the form of the master function is independent of the amplitude of the random field 
(for the range of disorder amplitudes considered here) and is the same as that for the 
pure case. To confirm that superscaling holds good in the tail region also, figure 3(b) 
shows the data from figure 3(a)  on a semi-logarithmic scale, namely we plot 
ln(S(k, t ) {k)( t ) ’ )  against k / (k ) ( t ) .  We have earlier reported similar superscaling of the 

6 

(a) I 

0 0 . 0  
jl 0 .2  
* 0.3 
* 0 . 4  

-10 +, , , ! ,  , , , ! ,  , , , , , ! ,  ~, , , , , , , ! ,  , , , 

k / <  k > 

, , I 
0 5 10 15 2 0 ~  2S 30 35 

Figure 3. ( a )  Plot of S(k, t)(k)(t)’  against k / ( k ) ( t )  for the non-conserved case. Data is 
for disorder amplitudes C = 0.0 at t = 1000 (the pure case, marked by circles); and C = 0.2, 
0.3,0.4 at I = 3000 (marked by the symbols indicated). ( b )  Plot of In(S(k, t ) (k ) ( t ) * )  against 
k/ (k ) ( t )  for thedatafromfigure 3(a) .  Symbols used have thesame meaning as in figure 3(u). 
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structure factor in our simulations of random magnets [14] and binary alloys [15] with 
quenched disorder in the parameters T and g in (2.2). 

4. Numerical results for the case with conserved order parameter 

We have also implemented the scheme (2.13) on a 128x128 lattice with periodic 
boundary conditions. The quantities calculated; the statistics; and averaging procedures 
are identical to those described in the previous section. Thus, we directly move on to 
a description of our numerical results. 

In figure 4, we plot (R)(t)' against t for the pure case (C =O.O) and various values 
of disorder (C = 0.2, 0.3, 0.4 and 0.5, marked by the symbols indicated). The growth 
law for the pure case is the well known Lifshitz-Slyozov (LS) law ((R)( t) = t"3) and 
this appears as a straight line (marked by circles) in figure 4. For early times, even the 
data for the disordered case obeys the LS law as the domains are too small to be 
affected by the disorder. However, there is a rapid crossover to a non-Ls growth regime 
and (as before) the crossover is earlier for higher disorder amplitudes. Based on the 
theoretical predictions of Villain and Grinstein and Fernandez [20], we expect the 
asymptotic growth law to be logarithmic in this case also, as the arguments for 
logarithmic growth are independent of whether or not the order parameter is consenred. 
In figure 5, we plot (R)(t) against In t and find that we have clear evidence of an 
extended logarithmic growth regime for all non-zero values of disorder amplitude. 
Some effects offreezing are seen at late times for C = 0.5 but they are not so pronounced. 

Next, we consider the dynamical scaling of the structure factor. Figure 6(n)  
superimposes data for S(k,  t ) (k) ( t )2  against k / ( k ) ( t )  from times t =4000,6000,8000 
and 10 000 (marked by the symbols indicated). The disorder amplitude is C = 0.2. The 
excellent data collapse indicates that dynamical scaling holds good in this case. In 
figure 6(b) ,  we show a similar plot for C = 0.4. In this case, the dynamical scaling 

5 0  

4 0  

30 

W * 
w " 2o 

10 

0 

0 5000 10000' 

t 

0 0 . 0  
0 0 . 2  
A 0.3 
* 0 . 4  
7 0 . 5  

Figure 4. Plot of (R)(f)'  against f for the conserved case, where (R)( t )  is the characteristic 
domain size at time 1. Data is presented for disorder amplitudes C =O.O (the pure case, 
marked by circles); and C =0.2, 0.3, O.Q(marked by the symbols indicated). 
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o b  

does not appear to hold and there is a systematic shift (towards an asymmetric form) 
in the universal function at later times. The effect is even more pronounced for C = 0.5, 
data for which we do not present here. Figure 7 ( a )  shows that superuniversal scaling 
does not hold either, even for disorder amplitudes. at which scaling holds good (e.g. 
C =0.2). In figure 7 ( a )  we superimpose S(k,  t ) (k)( t ) ’  against k / ( k ) ( t )  for t=l0000 
and disorder amplitudes C = 0.0, 0.2 and 0.4 (marked by the symbols shown). The 
‘master function’ for C = 0.4 (though the term is a bit misleading as there is no scaling) 
is quite different from the master function for the pure case, as is expected. However, 
even for C=O.2 (where scaling does hold good over the timescales of observation), 
the master function has a lower peak and is more asymmetric than that for the pure 
case. This is in contrast to our observation in the non-conserved case where domain 
growth which obeyed dynamical scaling also showed superscaling, namely no depen- 
dence of the master function on the disorder amplitude. The difference in the tails of 
the master functions is highlighted in figure 7 ( b ) ,  where we plot In(S(k, t ) (k ) ( t ) ’ )  
against k / ( k ) ( t ) .  

5. Summary and discussion 

This was the third (and final) paper of a three-stage exposition. In our first two papers 
([14](1) and [15](11)), we presented detailed numerical results for CDS models which 
mimicked domain growth in random magnets and binary alloys with quenched  disorder^ 
(e.g. immobile vacancies). In this paper, we have presented extensive numerical results 
from a CDS study of the effect of random fields on the dynamics of phase ordering in 
the cases of both non-conserved and conserved order parameter. We initiated this 
study because we felt that coarse-grained, computationally efficient models would help 
elaborate the nature of domain growth  in^ disordered systems. Microscopic Monte 
Carlo (MC) models have been somewhat inconclusive in this regard. At this stage, it 
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Figure 6. (a) Plot of S(k, t)(k)(r)' against k / ( k ) ( t )  for the conserved case for disorder 
amolitude C=O.2. Data is from times t=4000. 6000, 8000 and 10000 (marked by the 
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Figure 6. (a) Plot of S(k, t)(k)(r)' against k / ( k ) ( t )  for the conserved case for disorder 
amolitude C=O.2. Data is from times t=4000. 6000, 8000 and 10000 (marked by the 
symbols indicared). ( b )  Plot of S(k r)(k)(r) '  against k / ( k ) ( t )  far the conserved caie for 
disorder amplitude C = 0.4. Dara is from limes I = 4000,6000, 8000 and 10 000 (marked 
by thc symbols indicated). 

is natural to question what degree of success we have enjoyed in achieving our stated 
goal. 

In paper I, we studied the CDS equivalent of a two-dimensional TDGL model with 
disorder io the values of the parameters r and g in (2.2). We made two important 
observations regarding this model. Firstly, we found that the domain growth law was 
compatible with ( R ) ( r ) =  (In 1)" (the so-called Huse-Henley law [23]) over a limited 
range of disorder amplitudes and times. Unfortunately, there were a number of factors 
(e.g., finite-size effects, freezing) which resulted in our data not being very clear wirh 
regard to the asymptotic growth law. Nevertheless, our results were a substantial 
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Feure 7. ( a )  Plot of S(k, t)(k)(t)2 against k/(k)(f) for the non-conserved m e .  Data is 
fordisorder amplitudes C = 0.0 at f = 1000 (the pure case, marked by circles): and C = 0.0, 
0.2, 0.4 at f =IO000 (markid by the symbols indicated). ( b )  Plot of In(S(k,f)(k)(t)z) 
against kl(k)(f) for the data from figure 7(a). Symbols used have the same meaning as in 
figure 7(a). 

improvement on existing MC results [9]. Our second important observation was that 
the scaled structure factor showed a superuniversal scaling, namely the structure factor 
showed dynamical scaling for all values of disorder and the universal function obtained 
thus was independent of the disorder amplitude (even in the tail). This result was quite 
unambiguous and should be verifiable experimentally. 

In paper 11, we presented results for the conserved equivalent of the model in paper 
I. For the conserved case, we were not able to clearly establish a domain growth law, 
though it is our expectation (theoretically) that it should be the same as in the 
non-conserved case. Of course, it is possible that this was because our simulation did 
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not access the true asymptotic regime. However, we were again able to clearly establish 
the superuniversal scaling of the strncture factor, a fact that should emerge in experi- 
ments also. To the best of our knowledge, there are no MC studies of the conserved 
case with disorder. 

In this paper, (which we refer to as HI), we have presented detailed numerical 
results for domain growth in the presence of random fields. For the non-conserved 
case, we showed that (R)(t)=ln f over extended periods of time, though freezing 
effects do slow down the growth at later times. This was in conformity with the 
theoretical predictions of Villain and Grinstein and Femandez [ZO], and the numerical 
results of Oguz et al [12]. For &e disorder amplitudes presented here, the structure 
factors for different amplitudes of disorder obeyed dynamical scaling and the universal 
functions obtained thus were independent of the disorder amplitudes, i.e. we observed 
superuniversal scaling. For larger amplitudes of disorder, it seems that dynamical 
scaling might break down but this needs to be investigated further. For the conserved 
case, we were again able to demonstrate that ( R ) ( t )  ==In t over extended periods of 
time. In this case, we did see a clear breakdown of dynamical scaling at high amplitudes 
of disorder. Further, even at lower amplitudes of disorder (where dynamical scaling 
holds good over the timescales of observation), superuniversal scaling did not hold 
and the master function appears to become progressively more asymmetric as the 
amplitude of disorder is increased. 

It is our belief that papers I to 111 constitute the most detailed investigation (to 
date) of the effect of quenched disorder on domain growth. Our study has been greatly 
facilitated by the use of computationally efficient CDS models and we believe that these 
constitute the best prospect for further studies of the effects of disorder on phase 
ordering dynamics. 
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